skip to main content


Search for: All records

Creators/Authors contains: "Katz, Sheldon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this paper we propose a definition of torsion refined Gopakumar–Vafa (GV) invariants for Calabi–Yau threefolds with terminal nodal singularities that do not admit Kähler crepant resolutions. Physically, the refinement takes into account the charge of five-dimensional BPS states under a discrete gauge symmetry in M-theory. We propose a mathematical definition of the invariants in terms of the geometry of all non-Kähler crepant resolutions taken together. The invariants are encoded in the A-model topological string partition functions associated to non-commutative (nc) resolutions of the Calabi–Yau. Our main example will be a singular degeneration of the generic Calabi–Yau double cover of$${\mathbb {P}}^3$$P3and leads to an enumerative interpretation of the topological string partition function of a hybrid Landau–Ginzburg model. Our results generalize a recent physical proposal made in the context of torus fibered Calabi–Yau manifolds by one of the authors and clarify the associated enumerative geometry.

     
    more » « less
  2. Abstract A great number of theoretical results are known about log Gromov–Witten invariants (Abramovich and Chen in Asian J Math 18:465–488, 2014; Chen in Ann Math (2) 180:455–521, 2014; Gross and Siebert J Am Math Soc 26: 451–510, 2013), but few calculations are worked out. In this paper we restrict to surfaces and to genus 0 stable log maps of maximal tangency. We ask how various natural components of the moduli space contribute to the log Gromov–Witten invariants. The first such calculation (Gross et al. in Duke Math J 153:297–362, 2010, Proposition 6.1) by Gross–Pandharipande–Siebert deals with multiple covers over rigid curves in the log Calabi–Yau setting. As a natural continuation, in this paper we compute the contributions of non-rigid irreducible curves in the log Calabi–Yau setting and that of the union of two rigid curves in general position. For the former, we construct and study a moduli space of “logarithmic” 1-dimensional sheaves and compare the resulting multiplicity with tropical multiplicity. For the latter, we explicitly describe the components of the moduli space and work out the logarithmic deformation theory in full, which we then compare with the deformation theory of the analogous relative stable maps. 
    more » « less